How Mosquitos Avoid Obstacles in the Dark

Nocturnal mosquitoes navigate in the dark without crashing into surfaces. When they land on humans or other animals to feed, they do it very gently in order to remain stealthy – being noticed could spell disaster. Since these nocturnal mosquitoes cannot see what they are doing with their eyes, they use a different sensory mode – mechanosensing.


Bird wings act as a suspension system that rejects gusts

Scientists from the Royal Veterinary College (RVC) and the University of Bristol have discovered how birds are able to fly in gusty conditions – findings that could inform the development of bio-inspired small-scale aircraft.

We thought there might be something birds can teach us about coping with turbulence, so we invited Lily the barn owl, Sasha the tawny eagle, Ellie the goshawk and some of their friends to fly through gusts we made in our laboratory.


High aerodynamic lift from the tail reduces drag in gliding raptors

Scientists from the RVC and the University of Bristol have discovered how birds are able to fly in gusty conditions – findings that could inform the development of bio-inspired small-scale aircraft.

Birds and planes must obey the very same laws of physics, and a wing is a pretty good way to create the aerodynamic force known as Lift which balances the Weight of the animal, or aeroplane, due to the relentless pull of gravity. However, there are several notable differences between the two fliers. Flapping is a way to reorient the wings and the aerodynamic force they produce to propel animals forwards in order to balance drag.


Comparing the Movement of Crocodiles, Alligators and Caiman

RVC experts in the movement of various species have found that different crocodilian species – such as crocodiles, alligators and caiman – have very different tendencies when it come comes to galloping. Those who work closely with crocodilian species, such as in zoos and wildlife centres, had noticed over time that crocodiles, alligators and caimans move in different ways, especially when it comes to galloping – which is generally associated with horses.


AIRSCAN

The AIRSCAN project uses a modified research aircraft for aerial survey and data acquisition. During its first deployment in the LOCATE project, the aircraft allowed us to understand more about behaviour and locomotion in wild, free-ranging animals in southern Africa. The on-board technology helped reveal new insights into how animals interact with their natural environment, which will aid conservation and land management. The modified aircraft was originally built for studying large African carnivores and their prey in the savannah of northern Botswana. The researchers developed new ways of recording the detailed movements of these animals without disturbing them, using our wildlife tracking collars.


DAWNDINOS: Testing the locomotor superiority hypothesis for early dinosaurs

DAWNDINOS is in the final year of a five-year research programme studying the dawn of the age of the dinosaurs. This ERC Advanced Investigator grant-funded project, awarded to Prof. John Hutchinson, seeks to unify evolutionary and biomechanical research by achieving a “functional synthesis” in evolution that causally links the anatomy of extinct dinosaurs and their relatives (archosaurs; “ruling reptiles”) to actual performance.


LOCATE: Locomotion, hunting and habitat utilisation among large African carnivores and their prey

LOCATE: Locomotion, hunting and habitat utilisation among large African carnivores and their prey. The carnivores of the southern African savannah have no domestic counterparts and are at the extremes of performance in terms of speed, agility and strength. They are amongst the most threatened species in the world and yet there is much we do not know about them. At the beginning of this project, we did not know how the predators or their prey achieve the speed and manoeuvring required for the chase, what makes the difference between success and failure in hunting or how far the animals travel in a day or night and many other factors that may influence success and survival.


Biomechanical Research Revealing Elephants Move Like 4x4 Vehicles

The RVC has made a significant contribution to the subject of elephant movement over decades. Researchers have been puzzled about how elephants move since Edward Muybridge first caught their “ambling” gait on film as part of his major contribution (with Etienne-Jules Marey) to the invention of cinematography. Elephants can move somewhat quickly but never leave the ground with all four feet at once. Professor John Hutchinson of the RVC took up the challenge of understanding this decades ago and have been progressing research into it since then, spanning elephant anatomy, growth and locomotion.


Bioelectronics

Bioelectronic medicine, or electroceuticals, is a rapidly developing therapeutic field in which biomedical devices are used electrically to block, record, or stimulate neural activity as an alternative to drugs.

Pharmaceutical and surgical intervention are not always as effective as we would like or desirable, especially in species that are extremely sensitive to drugs, such as horses. Bioelectronic medicine allows us to intervene to help patients without the risks associated with other interventions.


Top of page